FEATURES

- ► Smallest Encapsulated 2W Converter
- ► Ultra-compact DIP-8 Package
- ► Wide 2:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1500 VDC
- ➤ Operating Ambient Temp. Range -40°C to +80°C
- ► No Min. Load Requirement
- **▶** Overload and Short Circuit Protection
- ► UL/cUL/IEC/EN 60950-1 Safety Approval & CE Marking

PRODUCT OVERVIEW

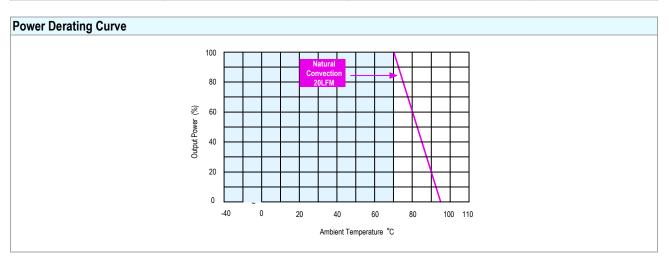
The MINMAX MFW02 series is the latest generation of high performance dc-dc converter modules setting a new standard concerning power density. The product offers a full 2W isolated dc-dc converter within an encapsulated DIP-8 package which occupies only 0.3 in^2 of PCB space. There are 28 models available for 5, 12, 24, 48VDC input with wide 2:1 input voltage range. Further features include over current, short circuit protection and no min. load requirement as well. An high efficiency allows operating temperatures range of -40°C to $+80^{\circ}\text{C}$.

These DC/DC converters offer an economical solution for many cost critical applications in battery-powered equipment, instrumentation, distributed power architectures in communication, industrial electronics, energy facilities and many other critical applications where PCB space is limited.

Model	Input	Output	Output Current	Input C	urrent	Max. capacitive	Efficiency
Number	Voltage	Voltage Voltage			Load	(typ.)	
	(Range)		Max.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%
MFW02-05S033		3.3	400	334			79
MFW02-05S05		5	400	494			81
MFW02-05S12	Ī -	12	167	472		100	85
MFW02-05S15	5 (4.5 ~ 10)	15	134	462	40		87
MFW02-05D05	(4.5 ~ 10)	±5	±200	482			83
MFW02-05D12		±12	±83	469		100#	85
MFW02-05D15		±15	±67	473			85
MFW02-12S033		3.3	400	138		100	80
MFW02-12S05		5	400	201			83
MFW02-12S12	40	12	167	192			87
MFW02-12S15	12	15	134	193	27		87
MFW02-12D05	(9 ~ 18)	±5	±200	198		100#	84
MFW02-12D12		±12	±83	193			86
MFW02-12D15		±15	±67	195			86
MFW02-24S033		3.3	400	70		100	79
MFW02-24S05		5	400	99			84
MFW02-24S12	24	12	167	97			86
MFW02-24S15	(18 ~ 36)	15	134	96	15		87
MFW02-24D05	(10 ~ 30)	±5	±200	99			84
MFW02-24D12		±12	±83	97			86
MFW02-24D15		±15	±67	97			86
MFW02-48S033		3.3	400	35			79
MFW02-48S05		5	400	50		100	83
MFW02-48S12	40	12	167	49		100	85
MFW02-48S15	48 (36 ~ 75)	15	134	49	8		86
MFW02-48D05	(30 ~ 13)	±5	±200	51			82
MFW02-48D12	1	±12	±83	49		100#	84
MFW02-48D15	1	±15	±67	50			84

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	5V Input Models	-0.7		12	- VDC
Innut Compa Valtaga (4 and man)	12V Input Models	-0.7		25	
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	5V Input Models			4.5	
Chart Ha Throughold Valtage	12V Input Models			9	
Start-Up Threshold Voltage	24V Input Models			18	
	48V Input Models			36	
Short Circuit Input Power	All Models			0.5	W
Input Filter	All Models Internal Capacitor				


Output Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Output Voltage Setting Accuracy				±1.5	%Vnom.	
Output Voltage Balance	Dual Output, Balanced Loads			±2.0	%	
Line Regulation	Vin=Min. to Max. @Full Load			±0.2	%	
Load Regulation	lo=0% to 100%			±1.0	%	
Cross Regulation (Dual)	Asymmetrical load 25% / 100% FL			±5.0	%	
Minimum Load	No mini	No minimum Load Requirement				
Ripple & Noise	0-20 MHz Bandwidth		70		mV _{P-P}	
Transient Recovery Time	25% Load Step Change		250	500	μsec	
Transient Response Deviation	25% Load Step Change		±3	±5	%	
Temperature Coefficient			±0.01	±0.02	%/°C	
Over Load Protection	Foldback		180		%	
Short Circuit Protection	Continuo	Continuous, Automatic Recovery				

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
NO landation Vallance	60 Seconds	1500			VDC
I/O Isolation Voltage	1 Seconds	1800			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100KHz, 1V		100		pF
Switching Frequency		100			KHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	4,226,000			Hours
Safety Approvals	UL/cUL 60950-1 recognition	UL/cUL 60950-1 recognition (UL certificate), IEC/EN 60950-1 (CB-report)			

Environmental Specifications						
Parameter	Conditions	Min.	Max.	Unit		
Operating Ambient Temperature Range	Natural Convection	-40	+80	°C		
(See Power Derating Curve)	Natural Convection	-40	+00			
Case Temperature			+95	°C		
Storage Temperature Range		-50	+125	°C		
Humidity (non condensing)			95	% rel. H		
Cooling	Natural Convection					
Lead Temperature (1.5mm from case for 10Sec.)			260	°C		

EMC Specifications						
Parameter	Stand	Performance				
EMI	Conduction & Radiation	EN55032, FCC part 15	Class A, B ₍₅₎			
	EN55024					
	ESD	EN61000-4-2 Air ± 8kV, Contact ± 6kV	Α			
	Radiated immunity	EN61000-4-3 10V/m	Α			
EMS	Fast transient (4)	EN61000-4-4 ±2kV	Α			
	Surge (4)	EN61000-4-5 ±1kV	Α			
	Conducted immunity	EN61000-4-6 10Vrms	A			
	PFMF	EN 61000-4-8 3A/M	Α			

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 3 Other input and output voltage may be available, please contact factory.
- To meet EN61000-4-4 & EN61000-4-5 an external capacitor across the input pins is required, please contact MINMAX.
- 5 To meet EN55032 Class A,B an external filter, please contact MINMAX.
- 6 That "natural convection" is about 20LFM but is not equal to still air (0 LFM).
- 7 Specifications are subject to change without notice.

Pin Connections					
Pin	Single Output	Dual Output			
1	-Vin	-Vin			
4	+Vin	+Vin			
5	+Vout	+Vout			
6	No Pin	Common			
7	-Vout	-Vout			

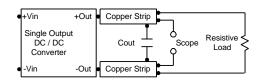
- ►All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

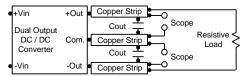
X.XX±0.25 (X.XXX±0.01)

▶ Pin diameter Ø 0.5 ±0.05 (0.02±0.002)

Physical Characteris	stics
----------------------	-------

Case Size : 14.0x14.0x8.0mm (0.55x0.55x0.31 inches)


Case Material : Non-Conductive Black Plastic (flammability to UL 94V-0 rated)


Pin Material : Tinned Copper
Weight : 3.9g

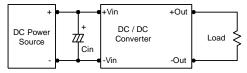
Test Setup

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47 µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

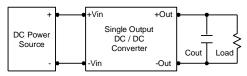
Technical Notes

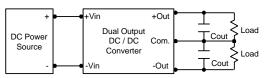
Maximum Capacitive Load


The MFW02 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

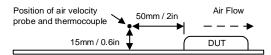
Overload Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is commended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 1.00 KHz) capacitor of a 8.2μ F for the 5V input device, a 3.3μ F for the 12V input devices and a 1.5μ F for the 24V and 48V devices.

Output Ripple Reduction


A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3μ F capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

