MINMAX®

FEATURES

- Industrial Standard DIP-24 Package
- Ultra-wide Input Ranges 9-36VDC, 18-75VDC, 40-160VDC
- ► I/O Isolation 3000VAC with Reinforced Insulation
- Operating Ambient Temp. Range -40°C to +92°C
- No Min. Load Requirement
- Under-Voltage, Overload and Short Circuit Protection
- EMI Emission EN 55032/11 Class A & FCC Level A Approved
- Vibration and Shock/Bump Test EN 61373 Approved
- Cooling, Dry & Damp Heat Test IEC/EN 60068-2-1, 2, 30 Approved
- Railway EMC Standard EN 50121-3-2 Approved
- Railway Certified EN 50155 (IEC60571) Approved
- Fire Protection Test EN 45545-2 Approved
- UL/cUL/IEC/EN 62368-1 (60950-1) Safety Approval & CE Marking

PRODUCT OVERVIEW

The MINMAX MIZI03 series is a new range of railway approved 3W isolated DC-DC converter within encapsulated DIP-24 package which specifically design for railway applications. There are 15 models available for railway input voltage of either 24(9~36)VDC or 48(18~75)VDC or 72/110(40~160)VDC and tight output voltage regulation.

Further features include high I/O isolation rated for 3000VAC with reinforced insulation, overload, under-voltage and short circuit protection and conducted EMI EN 55032/11 class A & FCC level A approved as well. MIZI03 series conform to vibration and shock/bump test EN 61373, cooling, dry and damp heat test IEC/EN 60068-2-1,2,30 and railway EMC standard EN 50121-3-2 and complies also with Railway Certification EN 50155 (IEC60571) and EN 45545-2 for fire protection test.

MIZI03 series offer an highly reliable solution for critical applications in railway systems, battery-powered equipment, measure instrumentation and many critical applications.

Model	Input	Output	Output Current Max.	Input Current		Max. capacitive Load	Efficiency
Number	Voltage (Range)	Voltage					(typ.)
				@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%
MIZI03-24S05		5	600	156	9	680	80
MIZI03-24S12	24	12	250	149		330	84
MIZI03-24S15	24	15	200	147		220	85
MIZI03-24D12	(9 ~ 36)	±12	±125	151		220#	83
MIZI03-24D15		±15	±100	149		220#	84
MIZI03-48S05		5	600	78	5	680	80
MIZI03-48S12	40	12	250	75		330	83
MIZI03-48S15	48	15	200	74		220	84
MIZI03-48D12	(18 ~ 75)	±12	±125	75		220#	83
MIZI03-48D15		±15	±100	75		220#	83
MIZI03-110S05		5	600	34		680	80
MIZI03-110S12	110	12	250	32		330	84
MIZI03-110S15	110 (40 ~ 160)	15	200	32	3	220	84
MIZI03-110D12		±12	±125	33		220#	83
MIZI03-110D15		±15	±100	32		220#	85

For each output

MIZI03 SERIES

DC-DC CONVERTER 3W, Railway Certified

DC-DC CONVERTER 3W, Railway Certified

Input Specifications

input opecifications						
Parameter	Model	Min.	Тур.	Max.	Unit	
	24V Input Models	-0.7		50		
Input Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100		
	110V Input Models	-0.7		170		
	24V Input Models			9		
Start-Up Threshold Voltage	48V Input Models			18	VDC	
	110V Input Models			40		
	24V Input Models		7.5			
Under Voltage Shutdown	48V Input Models		16			
	110V Input Models		37			
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load	l 60		ms		
Input Filter	All Models		Internal Pi Type			

Output Specifications

Parameter	Conditions / Model			Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy						±1.0	%
Output Voltage Balance	Dual Output, Balanced Loads				±1	±2.0	%
Line Regulation	Vin=Min. to Max. @Full Load					±0.5	%
Load Regulation	lo=0% to 100%					±1.0	%
Load Cross Regulation (Dual Output Models)	Asymmetrical Load 25/100% Full Load					±5.0	%
Minimum Load	No minimum Load Requirement						
Dianta 9 Maina	0-20 MHz	5Vo	Measured with a		50		mV _{P-P}
Ripple & Noise	Bandwidth	12Vo, 15V,o ±12Vo, ±15Vo	10µF/25V MLCC		75		mV _{P-P}
Transient Recovery Time		OF% I and Otan Obanas				500	µsec
Transient Response Deviation	25% Load Step Change(2)				±3	±5	%
Temperature Coefficient						±0.02	%/°C
Over Load Protection	Ніссир				150		%
Short Circuit Protection	Continuous, Automatic Recovery (Hiccup Mode 0.7Hz typ.)						

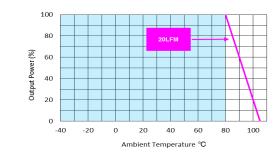
General Specifications

General Opecifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
I/O Isolation Voltage	Reinforced Insulation, Rated For 60 Seconds	3000			VACrms	
I/O Isolation Resistance	500 VDC	1000			MΩ	
I/O Isolation Capacitance	100kHz, 1V		1500		pF	
Switching Frequency	110Vin Models		170		kHz	
	Other Models		285		kHz	
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	3,360,000			Hours	
Safety Approval	UL/cUL 60950-1 recognition (UL certificate), IEC/EN 60950-1(CB-report), EN 50155, IEC 60571					
	UL/cUL 62368-1 recognition (UL certificate), IEC/EN 62368-1 (CB-report)					

EMC Specifications

ENIC Specifications							
Parameter		Standards & Level					
General		Compliance with EN 50121-3-2 Railway Applications					
	Conduction	EN 55022/11 ECC not 15	Without outomal components				
EMI	Radiation EN 55032/11, FCC part 15 Without external compone	without external components	Class A				
EMS	EN 55024						
	ESD	EN 61000-4-2 Air ± 8kV, Contact ± 6kV		A			
	Radiated immunity	EN 6	A				
	Fast transient(4)	EN	A				
	Surge ₍₄₎	EN 61000-4-5 ±2kV		A			
	Conducted immunity	EN 61000-4-6 10Vrms		A			
	PFMF	EN 61000-4-8 100A/m, 1000A/m For 1 Second		A			

E-mail:sales@minmax.com.tw Tel:886-6-2923150

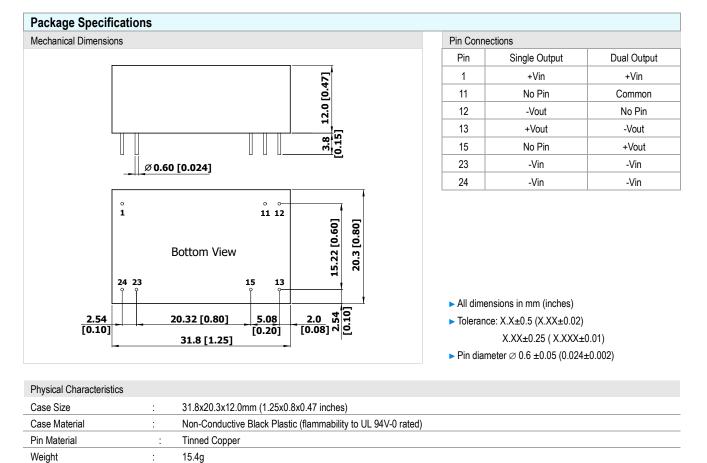


MIZI03 SERIES

DC-DC CONVERTER 3W, Railway Certified

Environmental Specifications							
Parameter	Conditions	Min.	Max.	Unit			
Operating Ambient Temperature Range		-40	+92	°C			
(See Power Derating Curve)		-40	+92	U			
Case Temperature			+105	°C			
Storage Temperature Range		-50	+125	°C			
Cooling Test	Compliance to IEC/EN 60068-2-	Compliance to IEC/EN 60068-2-1					
Dry Heat	Compliance to IEC/EN 60068-2-	Compliance to IEC/EN 60068-2-2					
Damp Heat	Compliance to IEC/EN 60068-2-3	Compliance to IEC/EN 60068-2-30					
Shock & Vibration Test	Compliance to IEC/EN 61373						
Humidity (non condensing)			95	% rel. H			
Lead Temperature			260	°C			
(1.5mm from case for 10Sec.)			260	C			

Power Derating Curve

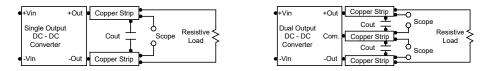

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 To meet EN 61000-4-4 & EN 61000-4-5 an external capacitor across the input pins is required, please contact MINMAX.
- 5 Other input and output voltage may be available, please contact factory.
- 6 Specifications are subject to change without notice.

MIZI03 SERIES

DC-DC CONVERTER 3W, Railway Certified

E-mail:sales@minmax.com.tw Tel:886-6-2923150

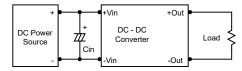


DC-DC CONVERTER 3W, Railway Certified

Test Setup

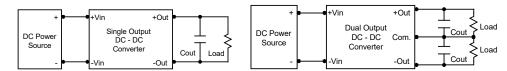
Peak-to-Peak Output Noise Measurement Test

Refer to the output specifications or add 4.7µF capacitor if the output specifications undefine Cout. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.


Technical Notes

Overload Protection

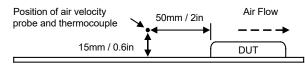
To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.


Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of 4.7μ F for the 24V input devices, a 2.2μ F for the 48V devices and a 1μ F for the 110V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.



Maximum Capacitive Load

The MIZI03 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

