

FEATURES

- ► Industrial Standard 1" x 1" Package
- ► Wide 2:1 Input Voltage Range
- ► Fully Regulated Output Voltage
- ► I/O Isolation 1500VDC
- ▶ Operating Ambient Temp. Range -40°C to +80°C
- ► Low No Load Power Consumption
- ► No Min. Load Requirement
- ► Overload and Short Circuit Protection
- ► Remote On/Off Control(option)
- ► Shielded Metal Case with Insulated Baseplate
- ▶ Designed-in Conducted EMI meets EN55032 Class A & FCC Level A
- ► UL/cUL/IEC/EN 60950-1 Safety Approval & CE Marking

PRODUCT OVERVIEW

The MINMAX MJW10 series is a new range of cost-optimized 10W isolated dc-dc converter within an encapsulated 1"x1" industrial standard package. There are 16 models available for 12, 24VDC with wide 2:1 input voltage range and tight output voltage regulation. The MJW10 series come in a shielded metal package and internal EMI filter to meets EN55032 & FCC Part15 Class A without external components.

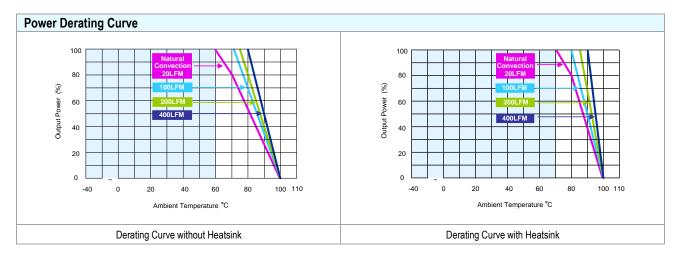
By state-of-the-art circuit topology and 87% high efficiency could be achieved allowing an operating temperature of -40°C to +80°C as well as low standby power comsumption. Further features include remote ON/OFF, over current protection, short circuit protection and no min. load requirement as well. These DC/DC converters offer an economical solution for many cost critical applications in battery-powered equipment, instrumentation, distributed power architectures in communication, industrial electronics, energy facilities and many other critical space applications.

Number Voltage	Input Voltage	Output Voltage	Output Current	Input Cu	Input Current		Efficiency (typ.)
	(Range)	, onago	Max.	@Max. Load	@No Load	Load	@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%
MJW10-12S033		3.3	2500	838		4700	82
MJW10-12S05		5	2000	980		2200	85
MJW10-12S051		5.1	2000	1000		2200	85
MJW10-12S12	12	12	830	954	45	330	87
MJW10-12S15	(9 ~ 18)	15	670	952	15	220	88
MJW10-12D05		±5	±1000	992		1000#	84
MJW10-12D12		±12	±416	956	-	150#	87
MJW10-12D15		±15	±333	957		100#	87
MJW10-24S033		3.3	2500	414		4700	83
MJW10-24S05		5	2000	490		2200	85
MJW10-24S051		5.1	2000	500		2200	85
MJW10-24S12	24	12	830	472	12	330	88
MJW10-24S15	(18 ~ 36)	15	670	471	12	220	89
MJW10-24D05		±5	±1000	490		1000#	85
MJW10-24D12		±12	±416	473		150#	88
MJW10-24D15		±15	±333	468		100#	89
MJW10-48S033		3.3	2500	207		4700	83
MJW10-48S05		5	2000	242		2200	86
MJW10-48S051		5.1	2000	250		2200	85
MJW10-48S12	48	12	830	233	10	330	89
MJW10-48S15	(36 ~ 75)	15	670	235	10	220	89
MJW10-48D05		±5	±1000	242		1000#	86
MJW10-48D12		±12	±416	239		150#	87
MJW10-48D15	7	±15	±333	237	1	100#	88

For each output

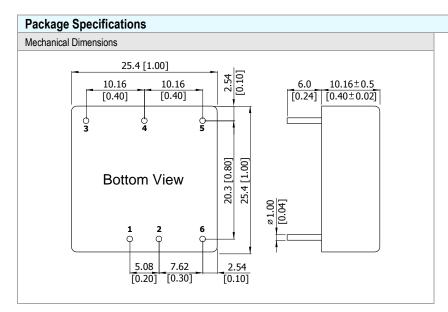
Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
	12V Input Models	-0.7		25	
Input Surge Voltage (1 sec. max.)	24V Input Models	-0.7		50	
	48V Input Models	-0.7		100	
	12V Input Models			9	
Start-Up Threshold Voltage	24V Input Models			18	VDC
	48V Input Models			36	
	12V Input Models			8.5	
Under Voltage Shutdown	24V Input Models			17	
	48V Input Models			34	1
Input Filter	All Models	Internal Pi Type			

Remote On/Off Control						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
Converter On	3.5V ~ 12V or Open Circuit					
Converter Off	0~1.2V or Short Circuit (Pin 2 and Pin 6)					
Control Input Current (on)	Vctrl = 5V			0.5	mA	
Control Input Current (off)	Vctrl = 0V			-0.5	mA	
Control Common	Referenced to Negative Input					
Standby Input Current			5		mA	


Output Specifications						
Parameter	Conditions / Model		Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy					±2.0	%Vnom.
Output Voltage Balance	Dual Output, Ba	alanced Loads			±2.0	%
Line Regulation	Vin=Min. to Max	x. @Full Load			±1.0	%
Land Daniel Car	1- 00/ 1- 4000/	Single Output		±0.5	%	
Load Regulation	Io=0% to 100%	Dual Output			±1.0	%
Cross Regulation (Dual)	Asymmetrical load	Asymmetrical load 25% / 100% FL			±5.0	%
Minimum Load		No minimum Load Requirement				
Ripple & Noise	0 00 MH I= Danduidth	3.3 & 5V Output		80		mV _{p-p}
	0-20 MHZ Bandwidth	l-20 MHz Bandwidth Other Output	100		mV _{p-p}	
Transient Recovery Time	050/ Land 04	on Ohana		300		μsec
Transient Response Deviation	25% L080 St	25% Load Step Change		±3	±5	%
Temperature Coefficient				±0.01	±0.02	%/°C
Over Load Protection	Hiccup		110	150		%
Short Circuit Protection	Hiccup Mode 0.7Hz typ., Automatic Recovery					

General Specifications					
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O lookstion Voltage	60 Seconds	1500			VDC
I/O Isolation Voltage	1 Second	1800			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100KHz, 1V			2000	pF
Switching Frequency			330		KHz
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,596,000			Hours
Safety Approvals	UL/cUL 60950-1 recognition (CSA certificate), IEC/EN 60950-1 (CB-report)				

Environmental Specifications						
Parameter	Conditions	Min.	Max.	Unit		
Operating Ambient Temperature Range (See Power Derating Curve)	Natural Convection	-40	+80	°C		
Case Temperature			+100	°C		
Storage Temperature Range		-50	+125	°C		
Humidity (non condensing)			95	% rel. H		
Cooling	Cooling Natural Convection					
RFI	Six-Sided Shielded, Metal Case					
Lead Temperature (1.5mm from case for 10Sec.)			260	°C		


EMC Specifications			
Parameter	9	Standards & Level	Performance
EMI	Conduction	EN55032, FCC part 15	Class A
	EN55024		
	ESD	EN61000-4-2 Air ± 8kV , Contact ±6kV	Α
	Radiated immunity	EN61000-4-3 10V/m	А
EMS	Fast transient (5)	EN61000-4-4 ±2kV	Α
	Surge (5)	EN61000-4-5 ±1kV	А
	Conducted immunity	EN61000-4-6 10Vrms	Α
	PFMF	EN61000-4-8 3A/m	А

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a fast blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact factory.
- To meet EN61000-4-4 & EN61000-4-5, an external capacitor across the input pins is required. Suggested capacitor : $330\mu F/80V$
- 6 That "natural convection" is about 20LFM but is not equal to still air (0 LFM)
- 7 Specifications are subject to change without notice.

Pin Connections					
Pin	Single Output	Dual Output			
1	+Vin	+Vin			
2	-Vin	-Vin			
3	+Vout	+Vout			
4	No Pin	Common			
5	-Vout	-Vout			
6	Remote On/Off (Optional)				

- ►All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

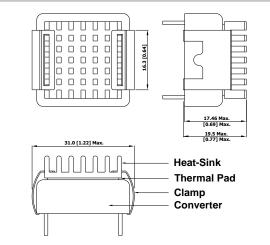
X.XX±0.25 (X.XXX±0.01)

▶ Pin diameter Ø 1.0 ±0.05 (0.04±0.002)

Physical Characteristics

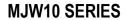
 Case Size
 : 25.4x25.4x10.16mm (1.0x1.0x0.4 inches)

 Case Material
 : Aluminium Alloy, Black Anodized Coating


 Base Material
 : FR4 PCB (flammability to UL 94V-0 rated)

 Pin Material
 : Tinned Copper

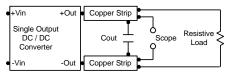
 Weight
 : 15g

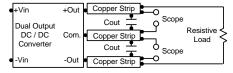

Heatsink (Option -HS)

Mechanical Dimensions

Heatsink Material: Aluminum Finish: Anodic treatment (black) Weight: 2g

- ►The advantages of adding a heatsink are:
- 1.To improve heat dissipation and increase the stability and reliability of the DC/DC converters at high operating temperatures.
- 2. To increase Operating temperature of the DC/DC converter, please refer to Derating Curve.


der Code Table			
Standard	With Remote On/Off	With heatsink	With Remote On/Off & heatsink
MJW10-12S033	MJW10-12S033-RC	MJW10-12S033-HS	MJW10-12S033-RC-HS
MJW10-12S05	MJW10-12S05-RC	MJW10-12S05-HS	MJW10-12S05-RC-HS
MJW10-12S051	MJW10-12S051-RC	MJW10-12S051-HS	MJW10-12S051-RC-HS
MJW10-12S12	MJW10-12S12-RC	MJW10-12S12-HS	MJW10-12S12-RC-HS
MJW10-12S15	MJW10-12S15-RC	MJW10-12S15-HS	MJW10-12S15-RC-HS
MJW10-12D05	MJW10-12D05-RC	MJW10-12D05-HS	MJW10-12D05-RC-HS
MJW10-12D12	MJW10-12D12-RC	MJW10-12D12-HS	MJW10-12D12-RC-HS
MJW10-12D15	MJW10-12D15-RC	MJW10-12D15-HS	MJW10-12D15-RC-HS
MJW10-24S033	MJW10-24S033-RC	MJW10-24S033-HS	MJW10-24S033-RC-HS
MJW10-24S05	MJW10-24S05-RC	MJW10-24S05-HS	MJW10-24S05-RC-HS
MJW10-24S051	MJW10-24S051-RC	MJW10-24S051-HS	MJW10-24S051-RC-HS
MJW10-24S12	MJW10-24S12-RC	MJW10-24S12-HS	MJW10-24S12-RC-HS
MJW10-24S15	MJW10-24S15-RC	MJW10-24S15-HS	MJW10-24S15-RC-HS
MJW10-24D05	MJW10-24D05-RC	MJW10-24D05-HS	MJW10-24D05-RC-HS
MJW10-24D12	MJW10-24D12-RC	MJW10-24D12-HS	MJW10-24D12-RC-HS
MJW10-24D15	MJW10-24D15-RC	MJW10-24D15-HS	MJW10-24D15-RC-HS
MJW10-48S033	MJW10-48S033-RC	MJW10-48S033-HS	MJW10-48S033-RC-HS
MJW10-48S05	MJW10-48S05-RC	MJW10-48S05-HS	MJW10-48S05-RC-HS
MJW10-48S051	MJW10-48S051-RC	MJW10-48S051-HS	MJW10-48S051-RC-HS
MJW10-48S12	MJW10-48S12-RC	MJW10-48S12-HS	MJW10-48S12-RC-HS
MJW10-48S15	MJW10-48S15-RC	MJW10-48S15-HS	MJW10-48S15-RC-HS
MJW10-48D05	MJW10-48D05-RC	MJW10-48D05-HS	MJW10-48D05-RC-HS
MJW10-48D12	MJW10-48D12-RC	MJW10-48D12-HS	MJW10-48D12-RC-HS
MJW10-48D15	MJW10-48D15-RC	MJW10-48D15-HS	MJW10-48D15-RC-HS



Test Setup

Peak-to-Peak Output Noise Measurement Test

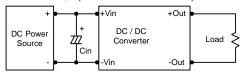
Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.

Technical Notes

Remote On/Off

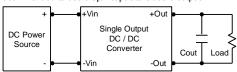
Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 6) during a logic low is -500uA.

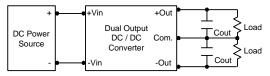
Overload Protection


To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Overvoltage Protection

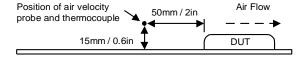
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage.


Input Source Impedance


The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a $12\mu\text{F}$ for the 12V, $4.7\mu\text{F}$ for the 24V input devices and a $2.2\mu\text{F}$ for the 48V devices, capacitor mounted close to the power module helps ensure stability of the unit.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use $3.3\mu\text{F}$ capacitors at the output.


Maximum Capacitive Load

The MJW10 series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 100°C.

The derating curves are determined from measurements obtained in a test setup.

Minmax Technology Co., Ltd.